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A B S T R A C T

A single hailstorm can cause losses in the billion-dollar range if it occurs over a densely populated area. Property
losses from hailstorms are rising with time mainly due to a combination of increases in population density and
wealth. Report based observational hail data alone are highly inhomogeneous and unable to discriminate be-
tween climate and societal changes. Here we present a statistical approach that estimates hail hazard from large-
scale environmental conditions. Using daily ERA-Interim reanalysis data and large hail observations (diameter
larger than 2.5 cm) from the conterminous United States (CONUS) we show that four predictors enable skillful
discrimination of large hail frequencies on a regional scale.
The predictors include atmospheric instability, freezing level height, and 0–3 km wind shear and storm re-

lative helicity. These variables are used to develop a hail algorithm, which provides the probabilities for large
hail occurrence from regional to global scales and from daily to climate timescales. The algorithm skill is tested
over the CONUS and with independent hail observations from Australia and Europe. It skillfully captures the
frequency, annual cycle, spatial patterns, and interannual variability of observed large hail records in a large
variety of climate regions. Deficiencies are found in regions with strong orographic forcing and low shear en-
vironments. The algorithm outperforms established severe convection indices in terms of more accurately pre-
dicting absolute hail frequencies and the annual cycles of large hail in all tested regions. The code is open-source
and is applicable to a variety of tasks including daily to seasonal forecasting and assessing climate change
influences on hail hazard.

1. Introduction

Globally the losses due to convective extremes such as large hail
(diameter larger than 2.5 cm), tornadoes, wind gusts, and flash floods
are increasing (Munich, 2016; Changnon, 2009). In the US average
annual loss from severe convective storms are $11.23 billion (in 2016
USD) compared to $11.28 billion from hurricanes (Gunturi and Tippett,
2017). The increasing losses mainly result from an increase in popu-
lation density and wealth and changes while the contribution from
changes in the intensity and frequency of convective storms are more
uncertain (Changnon, 2009). This uncertainty is due to short and in-
consistent observational records (Allen and Tippett, 2015), the high
cost and limited capacity of climate model simulations able to resolve
severe hailstorms, and missing physical understanding of interactions
between the climate system and severe convection (Tippett et al.,
2015).

Three approaches have been used to assess the impact of climate
variability and climate change on large hail occurrence.

1) Hail observations with hail pads or from damage reports. Observing
hail is difficult because hail is highly localized. Station based hail
observations with hail pads can provide homogeneous time records
but there are only a few countries that have long records and data
access is often limited (e.g., Xie et al., 2008). Observations from
either hail reports (e.g., Changnon and Changnon, 2000; Xie et al.,
2008) or economic loss reports (Changnon et al., 2000; Changnon,
2009; Barthel and Neumayer, 2012) are an alternative to hail pad
observations but effects of socioeconomic development, observa-
tional practices, and climatic changes have to be decomposed. Re-
port based hail datasets combine information about hail occurrence
from a variate of sources including the general public (Hand and
Cappelluti, 2011; Allen and Tippett, 2015). These datasets have
higher spatial resolution than station-based records but are highly
inhomogeneous with hail frequencies varying with populated den-
sity and reporting practice (Allen and Tippett, 2015).

2) The dynamical simulation of hail with numerical models (Mahoney
et al., 2012; Brimelow et al., 2017; Adams-Selin and Ziegler, 2016)
provides a physical understanding of the mechanisms that are
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associated with changing hail frequencies but comes at high com-
putational costs and large uncertainties in the parameterization of
the involved processes.

3) Empirical relationships between environmental properties and ob-
served damaging hail are used to relate large-scale environmental
conditions (Brooks, 2009; Mohr and Kunz, 2013; Allen et al., 2015a;
Westermayer et al., 2017; Mohr et al., 2015), remote sensing data
(Witt et al., 1998; Féral et al., 2003; Cecil, 2009; Mroz et al., 2017;
Ni et al., 2017), or a combination of both (Punge et al., 2017; Bedka
et al., 2018) to hail occurrence. This approach is flexible and com-
putationally efficient but assumes that the environmental conditions
for large hail development are not changing with climate warming
and that all favorable environments are equally likely to produce
large hail. Recently, machine learning algorithms were developed
that show promising results to improve traditional empirical fore-
casting methods (Gagne et al., 2017).

Our approach belongs to the third category and uses large-scale
environmental ingredients to estimate large hail probabilities. Large
hail formation is often related to supercell thunderstorms (Moller et al.,
1994), strong mesoscale convective systems (Houze, 2004), and pulse
storms (Miller and Mote, 2017). Most of the giant hail occurrences
–diameter larger than 5 cm– are related to supercells, which provide the
ideal environmental conditions such as strong and persistent updrafts
that exist for 30min or more (Blair et al., 2017). These storms typically
develop under strong convective instability, sufficient moisture at the
low levels, strong wind shear that usually varies with height, and a
triggering mechanism that can release the instability (Newton, 1963).
Many of these basic characteristics are included in current hail para-
meters that are used for severe weather forecasting such as the Sig-
nificant Hail Parameter (SHIP; http://www.spc.noaa.gov/exper/
mesoanalysis/help/help_sigh.html), the Large Hail Parameter (LHP;
http://www.spc.noaa.gov/exper/mesoanalysis/help/help_lghl.html),
the Significant Severe Parameter (Craven et al., 2004), or the Severe
Thunderstorm Environment Index (Brooks et al., 2003).

The aim of this study is to develop a synthetic hail algorithm that
derives hail occurrence probabilities from large-scale environmental
conditions from regional-to global-scale and from daily to climate
timescales. This is an advantage over existing hail indices due to the
global scope and higher temporal resolution (cf. Allen et al., 2015a),
due to only including predictors that are observational- and not model-
based (cf. Large Hail Parameter; Allen et al., 2015a), due to the tai-
loring to large hail instead of general severe convection (Brooks et al.,
2003; Craven et al., 2004), and using a smooth probabilistic instead of
step-wise transition from unfavorable to favorable hail environments
(Brooks et al., 2003).

We assume that environments that lead to large hail are consistent
worldwide, which means that e.g., environments that lead to large hail
in the US will also lead to large hail in e.g., Australia or Europe as
shown in Brooks (2009) and Allen et al. (2011). The global capability is
an advantage to previous environmental-based approaches, which ty-
pically focused on environmental conditions of smaller regions for hail
hazard assessment (e.g., Mohr and Kunz, 2013; Allen and Karoly, 2014;
Allen et al., 2015a). Space-borne hail observations are also able to
provide a global coverage but often have limited time series length for
climate change assessments (Cecil and Blankenship, 2012). Our algo-
rithm avoids assumptions about the distribution of variables, does not
prescribe specific relationships between the variables, and needs no
weighting or normalization functions.

The hail observations that are used to build and evaluate our ap-
proach are presented in section 2. Section 3 describes the synthetic hail
algorithm, together with a sensitivity analysis and the algorithm eva-
luation is shown in section 4. The paper closes with a global assessment
of large hail hazards in section 5 and with summary and conclusions in
section 6.

2. Hail observations

We consider hail observations from three sources: 1) the Storm
Prediction Center's Storm Events dataset (Schaefer and Edwards, 1999),
2) the Australian Bureau of Meteorology's (BoM) Severe Storms Archive
(http://www.bom.gov.au/australia/stormarchive/), and 3) the Eur-
opean Severe Storm Laboratory's (ESSL) European Severe Weather
Database (Dotzek et al., 2009). All data sets cover a common period
from 1979 to 2015 and provide the date and time, location, and the
maximum diameter of observed hailstones. We only consider hail re-
ports with hail diameters of 25mm or larger (large hail hereafter) to
account for sampling issues and changes in observational practices
(Allen and Tippett, 2015). The BoM and ESSL datasets have severe is-
sues with temporal homogeneity. The ESSL data has most records over
Central Europe and shows a steep increase in extremes after its uni-
fication in 2006 (Groenemeijer et al., 2017). The BoM data is limited
due to the sparse population density and the non-existence of a formal
collection mechanism for severe storm reports before 1987 (Allen and
Allen, 2016).

Based on the hail observations, we create a regular ×0. 7 0. 7 daily
gridded data set for each region on a grid that is identical to the ERA-
Interim reanalysis grid (Dee et al., 2011). A grid cell value cannot ex-
ceed one hail event per day even if multiple events were reported. This
is to avoid double counting of the same event and to reduce the effects
of varying population density on the gridded data set.

The average annual large hail occurrences from the gridded datasets
in Fig. 1 show some of the issues with hail data sets that are based on
hail reports (Allen and Tippett, 2015). All data sets have higher large
hail frequencies in big cities compared to the surrounding areas due to
the higher detection probability of large hail in urbanized areas
(Fig. 1a–c). Allen et al. (2015a) showed that large hail in the US also is
more frequently observed along the road network. A further issue in the
European data set is that different countries have different reporting
practices leading to artificial spatial gradients such as seen between
Germany and France in Fig. 1c.

Also, the time series of observed large hail are inhomogeneous due
to changes in population densities and reporting practices. The time
series in the conterminous United States (CONUS; Fig. 1d) shows a non-
physical linear increase from 1979 to 2005 (Allen et al., 2015b; Allen
and Tippett, 2015), Australian records show a step increase in hail
frequency in the late 80s due to the introduction of common reporting
practices (Fig. 1e), and the European data show an exponential increase
in observed large hail frequency starting in the mid 90s. Detecting
climate change impacts from these time series is very difficult due to
the large influence of the spatiotemporal inhomogeneities.

3. Example existing severe thunderstorm indices

We compare the here developed hail algorithm to three existing
severe thunderstorm indices that can provide severe convective ha-
zard estimates on a daily basis. The first one is the significant severe
parameter, which is the product of mean layer CAPE and 0–6 km
shear (Craven et al., 2004). According to Craven et al. (2004) values
larger than 20 000 m3 s 3 indicate environments that produce sig-
nificant hail/wind. The second index is the severe thunderstorm
environment index, which is one if CAPE 100, if the 2–4 km lapse
rate <6.5 K km−1, and if the environmental conditions are right of
the line + =2.86 log(0 6 km shear) 1.79 log(CAPE) 8.36 and zero
otherwise (Brooks et al., 2003). The third index is the Significant
Hail Parameter (SHIP), which is defined as

=SHIP [(MUCAPE J/kg) (Mixing Ratio of MU parcel g/kg) (700
500 hPa lapse rate K/km) ( 500 mb TEMP C) (0
6 km Shear m/s)]/

42,000,000. The 0–6 km shear must be within the range 7–27 m s−1,
the mixing ratio is confined to 11–13.6 g kg−1, and the 500 hPa
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temperature is set to −5.5 C for any warmer values. After calculating
the initial version of SHIP its values are modified if one of the fol-
lowing three criteria are met: 1) If MUCAPE <1300 J kg-1,

=SHIP SHIP (MUCAPE/1300); 2) if 700–500 hPa lapse rate
<5.8 K km−1, =SHIP SHIP (700 500 hPa lapse rate/5.8); and 3) if
the freezing level is <2400 m AGL, =SHIP SHIP (freezing level/2400).

4. Hail algorithm

We decided to avoid the parametric fitting of predictors to the raw
hail observations. Instead, we use the Storm Prediction Center's ob-
servations over the CONUS to identify environmental conditions that
were present at the time of large hail occurrence. We use the Storm
Prediction Center's data only for the hail algorithm development and
evaluate the algorithm's performance with independent observations in
Australia and Europe. The Storm Prediction Center dataset is best suited
for algorithm development since it covers a large range of climate re-
gions and includes an order of magnitude more recorded hail ob-
servations than the European and Australian dataset combined (see
Fig. 1d–f).

The environmental predictors are derived from ERA-Interim re-
analysis 6-hourly model level data within the period 1979–2015. ERA-
Interim has a ×0. 7 0. 7 horizontal grid spacing ( 78 km at the
equator), 60 vertical levels, and provides data in six-hourly intervals
(Dee et al., 2011). Twenty-two predictors are tested for their ability in
adding predictive skill to the algorithm (see Table 1). The predictors
include measures of buoyancy, vertical wind shear, atmospheric
moisture, and the freezing level height. Similar predictors are fre-
quently used for hail detection such as in the SHIP or LHP parameter

and in studies by Allen et al. (2015a) and Brooks et al. (2003).
All variables are based on 6-hourly ERA-Interim model-level

soundings. The exponents at the end of the acronyms indicate if pre-
dictors have an upper limit (U), a lower limit (L), or an upper and lower
limit (UL) for large hail development. Bold acronyms show the variables

Fig. 1. Observed annual average large hail day frequency for the period 1979 to 2015 in a 100.100 km area for the CONUS (a), Australia (b), and Europe (c). The
corresponding annual time series of accumulated large hail occurrences are shown in d–f.

Table 1
List of tested single predictors for the hail algorithm.

Variables Acronym Unit

0–1 km vector wind shear VS0-1L m s−1

0–3 km vector wind shear VS0-3L m s−1

0–6 km vector wind shear VS0-6L m s−1

0–12 km vector wind shear VS0-12L m s−1

maximum CAPE CAPEL J kg−1

minimum CIN CINL J kg−1

lifting condensation level LCLLU m
700–500 hPa average lapse rate LRmlLU K m−1

0–1 km storm relative helicity SRH0-1L m2 s−2

0–3 km storm relative helicity SRH0-3L m2 s−2

mean PBL relative humidity RHpblLU %
700–500 hPa mean relative humidity RHmlU %
mean mixing ratio in PBL MRpblLU g kg−1

700–500 hPa mean mixing ratio MRmlLU g kg−1

freezing level height above surface FLHU m
mixing ratio at 1st model-level MR1lLU g kg−1

mixing ratio at frezing level MRflLU g kg−1

mean THETA-E in PBL THETA-EpblL K
700–500 hPa mean THETA-E THETA-EmlL K
dewpoint temperature at 1st model-level DT1lLU K
mean temperature in PBL DTpblLU K
700–500 hPa mean dewpoint temperature DTmlU K
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that are included in the hail algorithm.
To define environmental conditions that are favorable for large hail

development we calculate conditioned predictors, which means that we
condition predictors on days and locations where large hail was ob-
served. This conditioning consists of three steps. 1) The ERA-Interim
grid cell that includes the location of the hail observation is selected. 2)
To account for spatial displacements of hail environments in ERA-
Interim and numerical diffusion a region of±2 grid cells around the hail
observation is selected. 3) The time slice with maximum instability is
selected at each day and all predictors are calculated from the corre-
sponding sounding. We use local time rather than UTC time to select the
four-time slices that occur during a day.

Fig. 2 shows a schematic of the climatological probability density
functions (PDFs) of a predictor variable (blue line in Fig. 2) and the
conditioned PDF of the same predictor (red line in Fig. 2). In this ex-
ample hail occurs favorably when the predictor is higher than its cli-
matological average. Based on the conditioned PDF we define the
probability for large hail (P v( )) for variable v and the variable values x as
a smooth transition between environments with low (P v( )) and en-
vironments with higher (P v( )):

=
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In Equation (1), pi denotes percentile values of the conditioned PDF
and x pi stands for the pi percentile of x. The subscripts i can have 4
values. =i 1, and =i 2 stand for the lower first and lower second per-
centile that define the lower limit for hail occurrence. Subscripts =i 3,
and =i 4 stand for the higher first and higher second percentile de-
fining the upper limit for hail occurrence with < < <p p p p1 2 3 4 (see
Fig. 2a). The percentiles must be < <p0 100 with =p 0 being the
minimum of x and =p 100 being the maximum.

The positive constant c controls the smoothness of the transition.
The transition is a step function for =c 0 and is very smooth for c larger
than one. In this study we choose =c 0.3, which leads to P v( ) close to
zero for > >x x xp p1 4 and P v( ) close to one for < <x x xp p2 3. To exclude
the same amount of hail environments we truncate the hail environ-
mental PDF equally on both sides by using = =p p p100tail 1 4 (i.e., if
p1 is the 4th percentile p4 is the 96th). Similarly, we use

= =p p p p p2 1 4 3 to achieve the same smoothness of transition

from hail to non-hail environments on both tails of the distribution.
Truncating hail environments can be beneficial due to errors in the
ERA-Interim data but can also result in excluding a-typical environ-
ments that produce large hail. For example, we will show later that hail
was observed at locations were ERA-Interim has no buoyancy, which is
unphysical. We perform extensive testing to find an optimal setting for
ptail and p in section 4.1. We assume that the p values are the same for
all predictors although the optimal values might vary according to ERA-
Interim's quality in simulating a predictor and the predictors con-
tribution to the hail-producing environment. This assumption was made
to improve the computational efficiency of the hail algorithm.

Not all predictors in Table 1 have lower and upper bounds. To de-
termine if there is a physical reason to limit large hail hazard at the
upper or lower end of the conditioned distribution we calculated the
hail production efficiency and the average hail size (Supplementary
Fig. 1). Hail production efficiency is defined as the ratio between the
conditioned density function and the unconditioned density function of
a predictor – e.g., the hail production efficiency of CAPE=4000 J kg−1

is 5%, which means that large hail is (observed and) reported one out
of 20 times when CAPE is that high in the CONUS. Lower and/or upper
bounds for hail occurrences are indicated by a decrease in average hail
size and hail efficiency towards the tails of the distribution. Predictors
that have lower and/or upper bounds are highlighted in Table 1.

So far we have described the probability for large hail P v( ) depen-
dent on single predictors but interactions between predictors can also
be important. Due to computational limitations, we are not able to test
all 231 possible combinations of predictors. Instead, we select the top
20 predictors that have a minimum overlap in the volume of their joint
distribution and their conditional joint distribution. Predictor combi-
nations that have small overlaps have the ability to well differentiate
hail environments from the background climatology. The top 20 pre-
dictor combinations according to this criterion are shown in Table S1 in
the supplement. The joint predictors are included in the hail algorithm
in a similar way as single predictors. The conditioned 2D distribution
for joint predictors (red contours in Fig. 2b) is binned into 35 bins with
equal sample sizes – equal numbers of points in each bin – along the x-
axis predictor. 35 bins are a compromise between sampling resolution
and sample size for statistical robustness.

The y-axis data in each bin is used to calculate probabilities for large
hail (P v v( )1 2 ) similar to individual variables. To increase the computa-
tional efficiency we discretize the smooth transition function in equa-
tion (1) into a step function with five steps (right inlay in Fig. 2b) re-
sulting in a stepwise increase/decrease of hail hazard instead of a

Fig. 2. Schematic of constraining large hail environmental conditions for single predictors (a) and for joint predictors (b). For single predictors, the climatological
daily record of a predictor (blue line) and the PDF of the same predictor conditioned on days with large hail observations (red solid line) is shown. The location of the
percentile values p1, p2, p3, and p4 of the conditioned PDF, which are used in equation (1), is shown with red dashed lines, and the zero and 100 percentiles are shown
with red dotted lines. The probabilities for large hail occurrence (P v( )) is shown in gray shades (secondary y-axis). For joint variables (b) the blue/red contours show
the 2D PDF of the climatological/conditioned environments. The transition between hail and non-hail environments is visualized by increasingly dark gray contours.
The boundaries of these contours are derived by binning the x-axis predictor into 35 bins of equal sample size. Percentile thresholds are calculated for each bin similar
to single predictors but a discrete step function is used for joint predictor transitions to increase the computational efficiency (inlay on the right and equation (2)).
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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smooth transition.
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Here =x x x( )/5p p2 1 . Equation (2) only shows the increasing
probability between x p1 and x p2 – from non-supportive to supportive
environments. The transition from supportive to non-supportive en-
vironments between x p3 and x p4 is equivalent.

We use a linear extrapolation of the discrete hail hazard prob-
abilities at the tails of the 2D conditioned distribution to estimate hail
hazard outside the observed predictor space. We fit the linear model to
the lowest/highest five bins to guarantee a smooth transition between
calculated and extrapolated hail hazard probabilities.

The probability of an environment producing large hail (PH) is given
by the product of the considered P v( ) and P v v( , )1 2 probabilities. This
means, PH will be zero even if only one of the environmental conditions
is not favorable for large hail development. This can be problematic
since slightly varying combinations of variables can compensate each
other and increase the environments ability to produce large hail. The
smooth transitions between favorable and non-favorable environments
partly account for this effect but large hail that is produced by atypical
environments is not captured by the algorithm as we will show later.

4.1. Model optimization

The goal of the algorithm optimization is to achieve the most skillful
hail estimates with a minimum number of predictors. We use three
metrics to optimize the algorithm's ability to capture 1) the shape of the
annual cycle of hail occurrence, 2) the sum of hit minus miss events,
and 3) the climatological spatial pattern of large hail in the CONUS.

The first metric is the root-mean-squared-error (RMSE) between the
normalized observed ( Om ) and modeled ( Pm ) annual cycle of
monthly mean CONUS-wide hail frequency:
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Here P H( ) is the hail hazard probability and the index m indicates the
monthly mean. We use the normalized frequency to minimize the im-
pact of undersampled hail observations on the statistic and assess if the
algorithm can reproduce the shape of the observed annual cycle, which
is less affected by under observing and artificial trends (Allen and
Tippett, 2015). The lower the RMSEAC the better. This metric ensures
that the seasonal cycle of hail hazard is well represented in the algo-
rithm.

The second metric is the normalized sum of hit minus miss events
(NHM ).
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Here the subscripts i, j, and t stand for the latitude, longitude, and
day of observed hail events ( = …t N0,1,2, , ). If the sum of hail prob-
abilities P H( ) in a square of 5×5 grid cells centred around the hail ob-
servation is larger or equal to 0.25 we count this as a hit event (plus
one). If it is lower than 0.25 the algorithm has failed to capture the
observed hail event (minus one). If more hail events have been captured
than missed NHM is positive. Finally, we divide the NHM by the sum of

hail probabilities P H( ) to penalize overprediction. A perfect algorithm
would have a =NHM 1 and an algorithm that has more hit than
missed events has a positive NHM . Note that a NHM score of one is
not desirable due to the under observation of hail. This metric ensures
that the algorithm is not overpredicting hail hazard and that individual
hail events are captured.

The third metric is Spearman's R rank correlation coefficient be-
tween the observed and modeled climatological average large hail
frequency in the CONUS (Wilks, 2011). A perfect algorithm would have
a Spearman's R of one and a skill-less algorithm would be close to zero.
This metric ensures that the climatological average spatial pattern of
hail hazard is captured in the algorithm.

In the optimization, we test ptail values between one and eleven and
p values between three and twenty-five. Increasing the ptail value re-
sults in excluding more observed hail environments while increasing p
values results in more diffusive hail hazard estimates. For each ptail and

p setting, all three skill score metrics are calculated for each predictor
in Table S1 and each predictor combination in Table S1 (in supple-
ment). The goal is to find the P v( ) and P v v( 1, 2) combination that leads to
the highest possible overall skill. The overall skill is calculated by
ranking the skill-scores for each of the three metrics and summing the
ranks. The predictor that has the lowest sum of ranks P O( 1) is considered
to be the most skillful in predicting hail hazard.

In the next step the remaining predictor probabilities P v( ) and pre-
dictor combinations P v v( 1, 2) are multiplied to P O( )1 to find the predictors
that lead to the highest skill scores. This procedure is performed until
all predictors and predictor combinations are included:

= …P P P P P ,H O O O O( ) ( ) ( ) ( ) ( )N1 2 3 (5)

where N is 42 – the number of predictors or predictor combinations in
Table 1 and Table S1. At a certain point adding more predictors leads to
deteriorating skill in predicting large hail. Therefore, we search for the
number of predictors that lead to the most skillful P H( ) estimates and
stop adding new predictors when skill increases become small (i.e.,
when the overall skill reached 95% of the maximum possible skill).

Fig. 3 shows the most skillful parameter settings for algorithms with
different number of predictors. In general, settings with large ptail lead
to low skills but need only a few variables to reach their optimum
performance and settings with small p have lower skills and demand
more input variables.

We decided to use =p 3tail and =p 25 as setting for the hail al-
gorithm, which has a very good overall performance and needs four
predictors which are: a joint predictor between maximum convective
available potential energy (CAPE) and freezing level height (FLH),
CAPE as a single predictor, and surface to 3 km storm-relative helicity
(SRH0-3), and vector shear (VS0-3). Adding additional predictors does
not improve the overall skill of the algorithm. The resulting percentile
thresholds that are used for single predictors (see equation (1)) are
shown in Table 2 and the hail environments are shown in Fig. 4.

=P P P P P .H CAPE FLH CAPE SRH VS( ) ( , ) ( ) ( 0 3) ( 0 3) (6)

Other settings that lead to similar high skill scores result in a similar
set of predictors and show comparable performances in the CONUS and
other mid-latitude regions, but hail estimates can vary in amplitude (see
Supplementary Fig. S2 for an example).

The first predictor selected by the optimization algorithm is the joint
conditional distribution of the most unstable CAPE and FLH (Fig. 4d).
CAPE is directly related to the potential updraft strength of a thun-
derstorm and has proven its value in various severe weather indices
(Brooks et al., 2003; Allen and Karoly, 2014). CAPE is by far the best
single discriminator between hail days and non-hail days since its cli-
matological and conditional density distribution only have an overlap
of 21% (Fig. 4a). Since it is not obvious which parcel should be used in
calculating CAPE we decided to use the most unstable CAPE to account
for elevated convection and shallow boundary layers. Previous studies
that focused mainly on the central US (Craven et al., 2002) showed that
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CAPE for a mean layer parcel averaged over the lowest 100 hPa is
skillful in predicting large hail occurrences but other regions such as
Australia typically have shallower moisture reservoirs and calculating
CAPE for average parcels over the lowest 50 hPa is beneficial (Allen
et al., 2011; Allen and Karoly, 2014). Using maximum CAPE, therefore,
is a compromise to account for a wider variety of hail-producing en-
vironments. FLH is important for hail development since too high
freezing levels can lead to melting of hailstones before they reach the
surface (Dessens et al., 2015) while too low melting levels might limit
the amount of supercooled water in areas with strong updraft speed.
This joint predictor shows that large hail can occur in low CAPE en-
vironments if FLH is low. With increasing FLH larger CAPE also is ne-
cessary. This joint predictor does not constrain environments with low
or zero CAPE (Fig. 4d), which makes it beneficial to add CAPE as the
second predictor to the algorithm (Fig. 4a). The third predictor in our
algorithm is SRH0-3, which leads to a substantial improvement in all
three considered skill scores (Fig. 3). SRH0-3 is a proxy for cyclonic
updraft rotation that occurs in supercell thunderstorms (Davies and
Ponald, 1990). Large values of SRH0-3 have been shown to be favorable
for large hail development (Rasmussen and Blanchard, 1998). SRH0-3
was calculated using the wrf. srhel function of the wrf-python package
(Ladwig, 2018), which is based on Kain et al. (2008). Fourth, adding a
lower limit for VS0-3 improves the normalized annual cycle and
Spearman's R rank correlation. Wind shear plays an important role in
amplifying and sustaining the updraft through storm organization
(Weisman and Klemp, 1982; Rasmussen and Blanchard, 1998; Brooks

et al., 2003; Dennis and Kumjian, 2017). Adding VS0-3 and SRH0-3 to
the algorithm leads to a shift in peak annual hail frequency from mid-
summer to late spring. Using large-eddy-simulations (Dennis and
Kumjian, 2017) show that VS0-3 can, in some cases, reduce the hail
mass in a storm and that deep-level, 0–6 km shear, could be a more
reliable predictor. This is in contrast to our findings, which favor low-
mid-level over deep-level shear for hail prediction.

In statistical modeling, care has to be taken to avoid model over-
fitting. Overfitting denotes the formulation of an overly complex al-
gorithm that corresponds too closely to a dataset, and may, therefore,
fail to reliably model additional data or to predict future observations
(Wilks, 2011). To ensure that the derived algorithm is not overfitted we
use two tests. 1) Split-sample cross-validation only uses half of the
observed hail observations for the model training and uses the other
half for independent validation. In our case, this means splitting the
time series at the beginning of 2002. The split sample hail estimates
have very similar skill than the original estimates (orange circles in
Fig. 3a–c), which means that the algorithm is not overfitted. 2) The
evaluation of the algorithm with independent hail observations from
Europe and Australia, shown in section 5, does not show signs of
overfitting.

4.2. Regional dependency of hail environments

The algorithm development is solely based on hail observations
from the CONUS. To test the robustness of the derived hail environ-
ments we investigate if hail environments in Europe and Australia are
similar to those found in the CONUS. A comparison between the 10th
percentiles for CAPE, VS0-3, and SRH0-3 of conditioned PDFs in sub-
regions of the CONUS, Europe, and Australia (Fig. 5a–c) shows that
there can be differences in the hail environments. CAPE is clearly
higher in most regions of the CONUS. The conditional PDFs for Aus-
tralia and central Europe agree well especially for values larger than
2 kJ kg−1, however, Allen and Karoly (2014) showed that ERA-Interim
systematically underestimates CAPE in Australia. VS0-3 is similar in
Australia and in the CONUS but is lower in European hail storms. This

Fig. 3. Three skill-scores used for the algorithm optimization. Panel a shows the root-mean-squared-error of the normalized monthly mean annual cycle of hail
frequencies (lower is better). Panel b shows the normalized hit minus miss event score (higher is better) and panel c shows the Spearman rank correlation coefficient
for climatological average hail frequencies (higher is better). The different colored lines show the best performing algorithm settings depending on the number of
predictors. The colored circles show the skill-scores where the algorithm reaches 95% of its global optimum setting, which denotes the point where the addition of
additional predictors does not lead to significant improvements. The final algorithm setting with four predictors is shown in red. Filled orange circles show the skill
scores from a split sample analysis and indicate no over-fitting issues. The table at the bottom shows the predictors for algorithms with different number of predictors.
The predictor acronyms are explained in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

Table 2
Parameters used in equation (1). The values are based on the conditioned PDFs
in the CONUS with =q 3tail and =q 25.

Variable and unit xp1 xp2 xp3 xp4

CAPE [J kg−1] 105 646 – –
VS0-3 [m s−1] 6.9 12.7 – –
SRH0-3 [m2 s−2] 35 138 – –
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Fig. 4. Climatological PDFs for all days within 1979–2015 (black line) and conditioned PDFs (red solid line) for CAPE, MRfl, and DTml (panels a–c respectively) for
the CONUS environments. Values in the upper left corner show the overlapping area between the two PDFs. Additionally, the average observed maximum hail size
conditioned on the corresponding predictor is shown as an orange line (right y-axis). Panel d shows the joint distribution between CAPE and FLH for the climatology
(blue contours) and conditioned on hail days (red contours). In panel a–c, gray areas in the background show the probability for hail development from zero to one
(bottom to top of y-axis) according to equation (1). The dark gray to light gray contours in panel d show the transition of hail probabilities for joint predictors
according to equation (2). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Similar to Fig. 4 but showing conditioned PDFs for the CONUS (red), Australia (green), and Europe (blue). A 25 point moving average smoothing has been
applied to remove noise from the PDFs. Colored markers in Panels a–c show the 11 percentile of the conditioned PDF for different climate regions in Europe,
Australia, and the CONUS. The regions are highlighted in maps on the right. Panel d shows the conditional joint distribution between CAPE and FLH where red, blue,
and green contours show hail producing environments for the CONUS, Europe, and Australia respectively. The black dashed lines outline the area in which large hail
can occur in our algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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might be related to orographic effects that compensate for lower shear
environments in European hail storms. Low shear environments can
also be seen in the US Southeast where pulse storms can produce hail
with diameter 2.5 cm in low shear environments (Miller and Mote,
2017). Large differences occur also for SRH0-3 where the CONUS
clearly has larger values than Europe and Australia. Only in the US
Southeast is the 10th percentile of the SRH0-3 PDFs similar low to the
European and Australian regions. The joint conditional PDFs of CAPE
and FLH agree well with each other and the hail environment limits
that are based on the CONUS hail environments include European and
Australian conditions (Fig. 5d). Although the conditional PDFs can be
different between the three continents, the 10th percentiles (circles in
Fig. 5a–c) generally fall within the transition region from non-favorable
to favorable environments (gray shading in background). This is in
agreement with previous studies that found similarities in extreme
convective storm environments (Brooks, 2009; Allen and Karoly, 2014).
However, these differences could introduce systematic biases in the hail
hazard estimates.

5. Hail algorithm evaluation

5.1. Annual cycle and interannual variability

Although we cannot use the raw hail observations for algorithm
evaluation due to the considerable spatiotemporal inhomogeneities, the
normalized annual cycle of monthly hail frequencies and the detrended
interannual variability can provide more unbiased information. Similar

to Allen et al. (2015a) we linearly detrend the CONUS observed annual
mean hail frequencies to remove artificial trends and to simplify the
comparison between observed and modeled interannual variability. We
only show the raw observations for Europe and Australia due to their
highly non-linear temporal development.

For the CONUS the hail algorithm is able to capture the main
variability of the observed annual time series, especially the peak years
in 1980, 1998, and 2011 and the low years of 1987, 1988, 2007, 2014,
and 2015 (Fig. 6a and b). The variability in large hail frequency in the
CONUS has partially been attributed to the El Niño–Southern Oscilla-
tion cycles (Allen et al., 2015b) and our algorithm is able to pick up this
signal (not shown). Minor differences between the modeled and ob-
served annual frequencies should not be over-interpreted due to the
large uncertainties in hail observations. Also, the modeled normalized
annual cycle of monthly mean hail frequency is well captured (Fig. 6c).
The biggest difference occurs in September and October where the al-
gorithm overestimates the observed normalized frequency. These dif-
ferences can also be found in other hail models (Allen et al., 2015a) and
their origin will be discussed later.

The observed annual time series in Australia is more variable than
the one in the CONUS (Fig. 6d), which is captured by the hail algo-
rithm. Focusing on the more recent period from 2000 to 2015 shows
that the algorithm is able to capture the main mode of the normalized
interannual variability (Fig. 6e). Also, the normalized annual cycle of
hail frequency is well captured (Fig. 6f). The overall good performance
of the algorithm in Australia is encouraging since the algorithm de-
velopment is solely based on the CONUS data.

Fig. 6. Annual hail frequencies normalized by the climatological average (1979–2015) for the CONUS (top row), Australia (middle row), and Central Europe (bottom
row). A zoom-in on 2000–2015 is shown in panel b, e, and h. Black dashed lines show the normalized hail observations, black solid lines the detrended normalized
observations (for the CONUS only), and red lines show the modeled hail probabilities. Shades show the 5–95 percentile of the daily sampling uncertainty in each year
of 100 bootstrap samples. The right panels (c, f, and i) show the normalized annual cycle of observed and modeled hail frequencies. The contours show the 5–95
percentile spread in the interannual variability. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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The algorithm evaluation in Europe is hardest due to the substantial
inhomogeneity of the hail observations (Fig. 6g) and the time series are
mainly shown for consistency than for skill analysis. We choose to focus
on the Central Europe region (Fig. 5 in blue map) where observational
coverage is relatively high. The algorithm is able to qualitatively cap-
ture the main mode of the observed variability in recent years (Fig. 6h)
and has a reasonably good representation of the annual cycle con-
cerning the interannual variability, although the modeled median cycle
is shifted by one month. One explanation for this shift could be the
higher frequency of very damaging and large hail stones in June and
July compared to more frequent but smaller events in May and June
(Punge and Kunz, 2016) assuming that our algorithm is more effective
in identifying large and giant hail.

The observed and modeled peak months of large hail frequencies in
the CONUS agree well between the observations and the algorithm and
show a seasonal northward propagation (Fig. 7a and b). March and
April peaks occur in the Southeast while mid-to late-summer peaks are

found in the Plains, Rocky Mountains, and Northeast. The largest dif-
ferences occur along the southern Atlantic coast, from North Carolina to
Florida, where observations partly show later peak months. In the
western half of the CONUS, the pattern of observed peak months is
noisy due to the low large hail frequency, which complicates evalua-
tions. In Australia modeled and observed results agree well, although a
comparison is complicated by the under-sampling of hail frequencies in
large parts of the country (Fig. 7c and d). Large hail occurs most fre-
quently during early summer in most parts of the country and late
summer along the west coast. The algorithm seems to shift peak hail
occurrence by one month in Europe consistent with Fig. 6i, although a
detailed analysis is not possible due to the noisy and sparse observa-
tional record (Fig. 7e and f).

5.2. Annual large hail frequency

As we discussed in section 2 it is difficult to derive the frequency of

Fig. 7. Color coded month of peak observed (top panels) and simulated (bottom panels) large hail frequencies for the CONUS, Australia, and Europe (left to right).
Areas with at least 2 large hail days per year in a 100×100 km area within the period 2000–2015 are shown. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Difference – simulated minus observed – annual average hail days for the period 2005–2015. Areas where no large hail was observed in this eleven year period
are shown in gray.
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large hail occurrence from observations due to undersampling and ar-
tificial trends (Allen and Tippett, 2015). This means that a certain de-
gree of overprediction of estimated hail hazard is desirable and can be
seen in most regions in the CONUS, Australia, and Europe (Fig. 8). We
focus the analysis on the most recent 11-years (2005–2015) due to the
improved coverage of hail observations (see Fig. 1). In the CONUS only
the front range region in Colorado and Wyoming, and the region east of
the Appalachians shows lower than observed large hail frequencies.
This is likely related to missing orographic effects on hail development
due to the low spatial resolution of the ERA-Interim data. Largest po-
sitive differences occur in south-east Texas. The overestimation in this
region is likely related to strong convective inhibition, which is not well
simulated in reanalysis products (Brooks et al., 2003; Gensini and
Ashley, 2011). Differences are generally smaller in densely populated
areas where observational under catch is low. Similar characteristics
can be seen in Australia and Europe.

We take advantage of the higher accuracy of hail observations in
populated areas for evaluating the algorithm's performance in capturing
the frequency, annual cycle, and interannual variability on regional
scales within the period 2005–2015. The algorithm shows acceptable
performance for many cities around the world (Fig. 9). Largest differ-
ences occur for Denver and Atlanta, which lie in areas that have been
already identified as low biased in Fig. 8a. Also, Dallas and Kansas City
show low biases in late summer. Other hail models that use reanalysis
data as input show similar differences in these regions (Allen et al.,
2015a).

To better understand why the hail algorithm fails to reproduce
observed hail frequencies we investigate the difference in predictor
variables during observed and modeled hail days in three focus-regions
(Fig. 10). We first focus on an area between Minnesota and Iowa were
we see an overprediction of 42.5% in the hail estimates during fall (e.g.,
Fig. 8). The PDF of CAPE conditioned on observed and modeled hail
days are very similar (Fig. 10a). VS0-3 and SRH0-3 (not shown) is
slightly lower in observed than in modeled hail events but both PDFs
overlap substantially (Fig. 10b). Also, other environmental variables

such as CIN, and humidity do agree, which means that we cannot at-
tribute the overprediction to differences in the investigated predictors.
Possible bias sources are an under-observation of hail in this region,
erroneous ERA-Interim soundings, and/or a missing trigger mechanism
that inhibits the realizes the potential for large hail development. The
second region is focused on Denver in June where the peak in hail
frequency is underestimated by 59.3% in our algorithm (Fig. 9e). Ob-
served hail partly occurs in environments with atypically low FLH,
CAPE, and SRH0-3 compared to the rest of the US (Fig. 10c–e). A
possible reason for the low bias in this region is missing orography
effects on hail producing storms due to the poor representation of ter-
rain in ERA-Interim. The third region is focusing on Atlanta during June
where the hail algorithm underestimates hail frequencies by 88%. Al-
though CAPE is sufficiently high in this area (Fig. 10f) the very low VS0-
3 and SRH0-3, in which observed hailstorms develop, leads to a sig-
nificant underestimation. The southeastern US experiences a high fre-
quency of pulse thunderstorms during summer, which are known to
occur in weakly sheared environments but can produce large hail
(Miller and Mote, 2017). Contributing to the low bias are known issues
with the reliability of hail size reports in this region (Cintineo et al.,
2012; Allen et al., 2015a). For example, Allen and Tippett (2015) show
that changes in the classification of hail size in 2010 lead to an over-
night decrease in hail of 0.75″ diameter, and a corresponding increase
in hail in excess of 1”.

5.3. Global large hail hazard and comparison to other severe weather
indices

Since similar large-scale environmental conditions lead to large
hailstorms in the CONUS, Europe, and Australia we feel confident in
applying the hail hazard algorithm on a global scale. Fig. 11 highlights
several hot spots for hail hazard. The most prominent is located on the
lee side of the Rocky Mountains in the U.S. Plains. Additional hot spots
are on the lee side of the Andes in Argentina, in the southern foothills of
the Himalayas, in central Africa, and in the mountains of the Arabian

Fig. 9. Average annual cycles of observed (black) and simulated (red) absolute hail frequencies for selected cities in the CONUS, Australia, and Europe within the
period 2000–2015 (city locations are shown in maps). Shown is the maximum monthly hail frequency from the closest 3×3 grid-cell centred on each city and its
surrounding land-cells. Contours show the 5–95 percentile spread in the interannual variability. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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Peninsula. The map clearly shows the importance of orography and
land-sea contrast in hail formation. It also shows the zonal dependence
of hail hazards with low hazard in the equatorial region, highest hazard
around ±30°, and low-hazard poleward of ±60°. Further, the east sides
of the continents typically have higher large hail hazards than the west
sides.

The hail hazard map in Fig. 11a partly highlights similar hot spot
regions compared to the significant severe parameter (Fig. 11b; Craven
et al., 2004), the severe thunderstorm environments index (Fig. 11c;
Brooks et al., 2003), and the SHIP parameter (11d). Although a direct
comparison is complicated since the first two of these indices are rather
tailored to severe convective storms and not specifically to hail en-
vironments or have different hail diameter thresholds, it is obvious that
they have much higher risk for severe convection in the tropics over
Africa (except for SHIP), the Arabian Sea, the Gulf of Mexico, and
Northern Australia. Using satellite data Cecil and Blankenship (2012)
and (Mroz et al., 2017) generally show high hail hazards in the tropics
and subtropics including Northwestern Australia where freezing levels
are high. Hail observations from Australia (Fig. 1b) do not confirm
these high frequencies, which is supported by Allen and Allen (2016)
and Bedka et al. (2018). However, due to a lack of ground observations,
tropical and subtropical large hail hazards are not well understood.

The SHIP parameter is designed to capture severe hail environments
and can, therefore, be more directly compared to our estimates. We
consider a SHIP index larger than 0.5 as likely to produce large hail.

SHIP captures the hail hazard hot spots in the CONUS and Argentina
well but tends to substantially overestimate hail risk especially in
subtropical coastal regions and has steep gradients between high and
low hazard areas. SHIP is tuned to capture large hail occurrences in the
CONUS and significantly under-predicts hail frequencies in Europe and
Southeast Australia compared to observations.

On a regional scale, our results compared well to hail estimates by
Bedka et al. (2018) over Australia and highlight the Southeast Coast as
the main area at risk with peak frequencies of up to 6 hail events per
year in a 1002 area in northern New South Wales and Southern
Queensland. This area is also highlighted in other severe weather in-
dices but the number of severe days is two to three times higher than
indicated by severe hail observations, which means that their applic-
ability for hail hazard assessments is difficult.

Our algorithm shows higher hail frequencies in the tropical regions
than estimates by Bedka et al. (2018). Observed large hail frequencies
in China agree well with our estimates (see Li et al., 2018, Fig. 7) with
highest frequencies in Northeast and North China, South Central China,
and in the far Northwest. However, the algorithm tends to under-
estimate frequencies in Central China and parts of the Tibetan Plateau.
Large hail frequencies and spatial patterns agree well with studies in
South Africa (Blamey et al., 2017) although Le Roux and Olivier (1996)
shifts the area of largest risk further inland. Hail frequency estimates
over Europe clearly highlight the surrounding of the Alps, Pyrenees,
and the Carpathians as the areas under highest risk (Punge et al., 2014,

Fig. 10. Difference in the density functions of large-hail predictors between observed (red) and modeled hail events (blue). Shown are results for 2000–2015 at the
Minnesota-Iowa border in September where hail estimates are 42.5% too high (panel a and b) and areas focused on Denver (panel c–e) and Atlanta (panel f–h) during
June where the algorithm underestimates observed hail frequencies by 59.3% and 88% respectively. P-values from a two-sided Kolmogorov-Smirnov (K–S) test are,
shown in the top right corner in each panel. Values lower than 5% indicate significantly different distributions. The investigated areas are shown in the top right map.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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2017; Mohr et al., 2015; Punge and Kunz, 2016) in agreement with our
estimates. Punge et al. (2017) include northern Africa in their hail
frequency estimates, which seems to be over-predicted in our algo-
rithm. Martins et al. (2017) assess destructive hail storms in Brazil and
highlight southern Brazil as the primary and southeastern Brazil as the
secondary hot-spot in good agreement with our estimates. Also, the
spatial patterns of hail frequencies in Argentina agree well with ob-
servations except for a low bias in the southern part of the country
(Mezher et al., 2012).

Comparing the normalized annual cycle of our large hail frequency
estimate with the significant severe parameter, the severe thunderstorm
environments index, and the SHIP (see Section 3 for a definition of
these indices) shows that our estimates are closest to the observations in

the CONUS (Fig. 12a). The other indices underestimate the hail risk in
spring and overestimate the risk in late summer and fall. Our hail al-
gorithm also outperforms the other indices in Australia (Fig. 12b). Over
Central Europe, all parameters show a shifted hail hazard by approxi-
mately one month (Fig. 12c). The significant severe and SHIP para-
meters have a pronounced maximum in June. Our hail frequency esti-
mates have the lowest normalized annual cycle RMSE in all regions
(Fig. 12d). They particularly outperform the other indices in Australia.
The SHIP index performs fairly well over the CONUS but has the lowest
skill in the other regions, which shows that it is tuned to capture US
hailstorms.

It is important to notice that the other three indices that we compare
our algorithm with, were not specifically developed to capture hail

Fig. 11. Global annual average large hail probability normalized to a 100×100 km area from 1979 to 2015 (panel a). Annual number of days with significant severe
parameters larger 20 000 (panel b), severe thunderstorm environments (panel c), and SHIP parameters > 0.5 (panel d). The numbers in the top left corner in panel
b–d show Spearman's rank correlation coefficient compared to the hail frequency estimates in panel a.
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frequency larger than 25mm in diameter and that an improved perfor-
mance of our hail frequency estimates should be expected to some degree.

6. Summary and conclusion

The presented hail algorithm is based on four environmental in-
gredients that are present during large hail observations. The algorithm
is developed with US hail observations (Schaefer and Edwards, 1999)
and its performance is tested over the US, Australia, and Europe. The
algorithm has skill in:

• reproducing the shape of the annual cycle of hail frequencies from
regional to continental scales,
• simulating the observed frequency of hail occurrence,
• reproducing observed spatial patterns of hail frequencies and their
seasonal evolution, and
• simulating the observed interannual variability of large hail fre-
quencies.

The largest deficiencies, which result in a low-biased hail hazard
estimate, are found in areas with strong local scale forcing and in areas
and seasons where hailstorms develop in atypical conditions. The
former deficiency affects particularly region on the leeward side of
mountains. This is likely due to the coarse grid spacing and systematic
biases in the ERA-Interim input variables. The latter affects the
Southeastern US where pulse storms are the dominant mode of severe
convection during summer. In areas with strong inhibition, an over-
prediction of hail frequencies can occur.

The algorithm compares well with existing hail risk estimates from
hail pads, satellite data. It also agrees well with estimates of other en-
vironmental ingredient-based indices concerning the spatial locations
of the major hail hazard regions in mid-latitudes. Major differences
occur in tropical and subtropical regions where large hail hazards are
not well observed.

The advantage, compared to existing approaches, is its flexibility to
work with a wide variety of sounding data (i.e., observed, forecast, and
climate model soundings), its ability to provide daily and sub-daily hail
risk estimates, its global scope, and its non-parametric approach that does
not demand scaling parameters and is not based solely on parameterized
families of probability distributions. We show that our algorithm has ad-
vantages over three widely used environmental based severe convective
indices that provide hazard assessments on a daily basis in terms of cap-
turing the annual cycle of hail hazards and its accuracy in predicting large
hail frequency. For monthly averages over the US, the algorithm perfor-
mance similarly to the hail model by Allen et al. (2015a), which also uses
four predictor variables but has a simpler algorithm.

Our algorithm has a wide range of applications including hail
forecasting and climate assessments on regional to global scales. Its
statistical approach and input variables are different from existing hail
models and indices that focus on multiple convective extremes (Gensini
and Ashley, 2011; Allen et al., 2015a; Brooks et al., 2003) but the two
leading predictor variables – CAPE and SRH – are similar to the hail
model by Allen et al. (2015a). It should also be mentioned that the hail
algorithm's skill is strongly dependent on the quality of the ERA-Interim
input data, which varies in time and between locations. To derive local
point hail frequencies for an individual exposed asset it is necessary to
transfer the presented large-hail frequencies.

A further caveat is that storm triggering mechanisms (e.g., oro-
graphic lifting, convergent flows) are not included in the algorithm,
resulting in an underestimation of hail hazards in areas where these
processes are important or an overestimation of hail risk in areas with
strong inhibition, e.g., south-east Texas. However, even sophisticated
convection-resolving models struggle with simulating this process
(Gagne et al., 2017).

Future work will aim to assess the algorithm's sensitivity to different
input data sets such as different reanalysis, radiosonde data, and cli-
mate models. A future development of the algorithm could include a
probabilistic maximum hail size distribution estimate based on the re-
lationships between the observed hail environments and observed
maximum hail sizes. Furthermore, future studies will focus on trends in
historic hail hazard assessments, the global impacts of large-scale cli-
mate variability such as the El Niño–Southern Oscillation, and potential
changes in large hail hazards in future climates. In another direction,
using satellite observations in combination with hail environments as in
Punge et al. (2017) or Bedka et al. (2018) is promising to enhance our
understanding of global hail hazards and to increase the spatiotemporal
accuracy of the presented data.
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ERA-Interim data can be derived from ECMWF's MARS archive
(http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=ml/
). Storm Prediction Center's Storm Events data can be downloaded from
https://www.ncdc.noaa.gov/stormevents/ftp.jsp. The BoM Severe
Storms Archive data can be derived from http://www.bom.gov.au/
australia/stormarchive/and ESSL's European Severe Weather Database
is located at https://www.eswd.eu/. The daily hail hazard estimates
can be freely downloaded under https://doi.pangaea.de/10.1594/
PANGAEA.888881?format=html#download and the hail hazard algo-
rithm is available from the authors upon request.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.wace.2018.10.004.
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